1. Gold melts at $1063{ }^{\circ} \mathrm{C}$ and boils at $2970{ }^{\circ} \mathrm{C}$. Mention what forms of motion (rotation, translation, vibration) apply to gold atoms at each of the following temperatures.
a. -273 C
b. 200 C
c. 1500 C
d. 3244 K
2. By what factor will the pressure of a gas change if its volume is compressed from 20 L to 15 L while its temperature increases from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$?
3. A tank containing hydrogen $\left(\mathrm{H}_{2}\right)$ weighs 40.15 kg . The mass of the empty tank was 40.00 kg . According to the manometer, the pressure is 500 kPa ; its temperature is $20^{\circ} \mathrm{C}$. What is the volume of the tank? Is it big enough to supply you with a litre per day for a year?

Promise me you'll always remember: You're braver than you believe, and stronger than you seem, and smarter than you think.

- A. A. Milne

4. $\mathrm{Fe}+0.5 \mathrm{O}_{2} \rightarrow \mathrm{FeO}+266.5 \mathrm{~kJ}$
$2 \mathrm{Fe}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+822.2 \mathrm{~kJ}$

Find the amount of heat involved in the formation of 1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ from O_{2} and FeO .
5. Ludovic poured 200 mL of a 0.1 M LiOH solution into a 300 mL solution of acetic acid. The neutralization effect increased the temperature of the aqueous solution from $20^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.

Calculate the molar heat of reaction per mole of LiOH.

Promise me you'll always remember: You're braver than you believe, and stronger than you seem, and smarter than you think.

- A. A. Milne

6. You are given the energy diagram below for the oxidation reaction of zinc metal.

Based on the above diagram:
a) What is the activation energy of the forward reaction? \qquad
b) What is the activation energy of the reverse reaction? \qquad
c) Determine the change in enthalpy of the reverse reaction. \qquad
d) Is the decomposition of $\mathrm{ZnO}_{(s)}$ an exothermic or endothermic reaction? Justify.
\qquad
\qquad
e) Fill in the energy missing in the balanced chemical equation shown below.

$$
2 \mathrm{Zn}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{ZnO}_{(\mathrm{s})}+\ldots \mathrm{kJ}
$$

Promise me you'll always remember: You're braver than you believe, and stronger than you seem, and smarter than you think.

- A. A. Milne

Promise me you'll always remember: You're braver than you believe, and stronger than you seem, and smarter than you think.

- A. A. Milne

