\qquad

1. The reaction of iodide ion with hypochlorite ion, OCl^{-}(found in liquid bleach), is shown:

$$
\mathrm{OCl}^{-}+\mathrm{I}^{-}---->\mathrm{Ol}^{-}+\mathrm{Cl}^{-}
$$

	Initial Concentrations		Initial Rate of Formation $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$ of Cl^{-}
Reactants	$[\mathrm{OCl}]$	$\left[I^{-}\right]$	1.75×10^{4}
Trial 1	1.7×10^{-3}	1.7×10^{-3}	3.50×10^{4}
Trial 2	3.4×10^{-3}	1.7×10^{-3}	3.50×10^{4}
Trial 3	1.7×10^{-3}	3.4×10^{-3}	

i. Determine the general rate law for the reaction above.
ii. If the concentration of the $\mathbf{O C l}^{-}$is tripled, how will the initial rate change?
iii. If the concentration of the $\mathbf{O C l}^{-}$is tripled, how will the reaction time change?
\qquad
2. In each of the following pairs of reaction, choose the one that will be slower. Justify your choice.
i. (a) The burning of a strip of magnesium, $\mathrm{Mg}_{(s)}$, in air.
(b) The burning of finely powdered magnesium, $\mathrm{Mg}_{(s)}$, in air.
ii. (a) The oxidation of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, in air.
(b) The oxidation of hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, in air with catalyst.
iii. (a) The reaction of 5.0 g of powdered zinc metal, $\mathrm{Zn}_{(s)}$, with $1.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ at $50.0^{\circ} \mathrm{C}$.
(b) The reaction of 5.0 g of powdered zinc metal, $\mathrm{Zn}_{(\mathrm{s})}$, with $1.0 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}$ at $20.0^{\circ} \mathrm{C}$.
iv. (a) The reaction of hydrogen gas, $\mathrm{H}_{2(\mathrm{~g})}$, with the oxygen in the air, $\mathrm{O}_{2(\mathrm{~g})}$, to produce water vapour, $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$.
(b) The reaction of hydrogen gas, $\mathrm{H}_{2(\mathrm{~g})}$, with pure oxygen, $\mathrm{O}_{2(\mathrm{~g})}$, to produce water vapour, $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$.
v. \quad (a) $\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{I}_{(\mathrm{aq})} \rightarrow \mathrm{Pbl}_{2(s)}$
(b) $\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{11(\mathrm{~s})}+11 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 11 \mathrm{CO}_{2(\mathrm{~g})}+11 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
i. \qquad
\qquad
ii. \qquad
\qquad
iii. \qquad
\qquad
iv. \qquad
\qquad
v. \qquad
\qquad
3. Draw two ways you can alter a Maxwell Boltzmann graph to INCREASE the reaction rate and explain your reasoning for your modifications.

\qquad
\qquad
\qquad
\qquad
4. When a candle $\left(\mathrm{C}_{20} \mathrm{H}_{42}\right)$ burns, the following reaction occurs:

$$
\mathrm{C}_{20} \mathrm{H}_{42(\mathrm{~s})}+61 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 40 \mathrm{CO}_{2(\mathrm{~g})}+42 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\text { heat }
$$

If the rate of production of $\mathrm{CO}_{2(\mathrm{~g})}$ is $0.98 \mathrm{~g} / \mathrm{min}$, what mass of $\mathrm{C}_{20} \mathrm{H}_{42(\mathrm{~s})}$ is consumed in 30.0 seconds?
\qquad
5. Consider the following reaction:

$$
2 \mathrm{Al}_{(\mathrm{s})}+3 \mathrm{CuCl}_{2(\mathrm{aq})} \rightarrow 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{Cu}_{(\mathrm{s})}
$$

If the rate of consumption of Al is $0.46 \mathrm{~g} / \mathrm{min}$, how many minutes will it take to produce 0.89 g of Cu ?
6. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
a) Write a balanced formula equation for this reaction.
b) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of consumption of HCl in moles/s.
c) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the rate of production of H_{2} in g / s.
d) If the rate of consumption of magnesium is $5.0 \times 10^{-9} \mathrm{~mol} / \mathrm{s}$, find the mass of Mg consumed in 5.0 minutes.
\qquad
7) The mass of a burning candle is monitored to determine the rate of combustion of paraffin. An accepted reaction for the combustion of paraffin is:

$$
2 \mathrm{C}_{28} \mathrm{H}_{58(\mathrm{~s})}+85 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 56 \mathrm{CO}_{2(\mathrm{~g})}+58 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The following data is observed:

Time (min)	Mass of Candle (g)
0.0	25.6
6.0	25.1
12.0	24.5
18.0	23.9
24.0	23.4
30.0	22.8

a) Calculate the average rate of consumption of paraffin in $\mathrm{g} / \mathrm{min}$ for the time interval 12.0 to 24.0 minutes.
b) Calculate the rate of CO_{2} production in $\mathrm{mol} / \mathrm{min}$ for the time interval 12.0 to 24.0 minutes.

