1. The reaction of iodide ion with hypochlorite ion, OCl⁻ (found in liquid bleach), is shown:

	Initial Concentrations		Initial Rate of Formation
Reactants	[OCI ⁻]	[[⁺]	(mol L ⁻¹ s ⁻¹) of Cl ⁻
Trial 1	1.7 X 10 ⁻³	1.7 X 10 ⁻³	1.75 X 10 ⁴
Trial 2	3.4 X 10 ⁻³	1.7 X 10 ⁻³	3.50 X 10 ⁴
Trial 3	1.7 X 10 ⁻³	3.4 X 10 ⁻³	3.50 X 10 ⁴

i. Determine the general rate law for the reaction above.

ii. If the concentration of the **OCI**⁻ is tripled, how will the initial rate change?

iii. If the concentration of the **OCI**⁻ is tripled, how will the reaction time change?

	2.	In each	of the following pairs of reaction, choose the one that will be slower. Justify your choice.
		i.	(a) The burning of a strip of magnesium, Mg _(s) , in air. (b) The burning of finely powdered magnesium, Mg _(s) , in air.
		ii.	(a) The oxidation of hydrogen peroxide, H_2O_2 , in air. (b) The oxidation of hydrogen peroxide, H_2O_2 , in air with catalyst.
		iii.	(a) The reaction of 5.0 g of powdered zinc metal, $Zn_{(s)}$, with 1.0 M HCl _(aq) at 50.0°C. (b) The reaction of 5.0 g of powdered zinc metal, $Zn_{(s)}$, with 1.0 M HCl _(aq) at 20.0°C.
		iv.	(a) The reaction of hydrogen gas, $H_{2(g)}$, with the oxygen in the air, $O_{2(g)}$, to produce water vapour, $H_2O_{(g)}$. (b) The reaction of hydrogen gas, $H_{2(g)}$, with pure oxygen, $O_{2(g)}$, to produce water vapour, $H_2O_{(g)}$.
		v.	(a) $Pb^{2+}_{(aq)} + 2I^{-}_{(aq)} \rightarrow PbI_{2(s)}$ (b) $C_{11}H_{22}O_{11(s)} + 11O_{2(g)} \rightarrow 11CO_{2(g)} + 11H_2O_{(g)}$
i			
ii			
iii			
iv			
v			

Reaction Rates Review Package

Name:_____

3. Draw two ways you can alter a Maxwell Boltzmann graph to INCREASE the reaction rate and explain your reasoning for your modifications.

4. When a candle $(C_{20}H_{42})$ burns, the following reaction occurs:

 $C_{20}H_{42\,(s)}$ + 61 $O_{2\,(g)}$ \rightarrow 40 $CO_{2\,(g)}$ + 42 $H_{2}O_{\,(g)}$ + heat

If the rate of production of $CO_{2(g)}$ is 0.98 g/min, what mass of $C_{20}H_{42(s)}$ is consumed in 30.0 seconds?

5. Consider the following reaction:

2 Al $_{(s)}$ + 3 CuCl_{2 (aq)} \rightarrow 2 AlCl_{3 (aq)} + 3 Cu $_{(s)}$

If the rate of consumption of Al is 0.46 g/min, how many minutes will it take to produce 0.89 g of Cu?

- 6. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
 - a) Write a *balanced formula equation* for this reaction.

b) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the *rate of consumption of HCl* in moles/s.

c) If the rate of consumption of magnesium is 5.0 x 10^{-9} mol/s, find the *rate of production of H*₂ in g/s.

d) If the rate of consumption of magnesium is 5.0 x 10^{-9} mol/s, find the mass of Mg consumed in 5.0 minutes.

7) The mass of a burning candle is monitored to determine the rate of combustion of paraffin. An accepted reaction for the combustion of paraffin is:

$$2 C_{28}H_{58(s)} + 85 O_{2(g)} \rightarrow 56 CO_{2(g)} + 58 H_2O_{(g)}$$

The following data is observed:

Time (min)	Mass of Candle (g)
0.0	25.6
6.0	25.1
12.0	24.5
18.0	23.9
24.0	23.4
30.0	22.8

- a) Calculate the average rate of consumption of paraffin in g/min for the time interval 12.0 to 24.0 minutes.
- b) Calculate the rate of CO₂ production in mol/min for the time interval 12.0 to 24.0 minutes.