1. The reaction of iodide ion with hypochlorite ion, OCl- (found in liquid bleach), is shown:

$$OCl^{-} + l^{-} ----> Ol^{-} + Cl^{-}$$

	Initial Concent	trations	Initial Rate of Formation
Reactants	[OCl ⁻]	[1-]	(mol L ⁻¹ s ⁻¹) of Cl ⁻
Trial 1	1.7 X 10 ⁻³	1.7 X 10 ⁻³	1.75 X 10 ⁴
Trial 2	3.4 X 10 ⁻³	1.7 X 10 ⁻³	3.50 X 10 ⁴
Trial 3	1.7 X 10 ⁻³	3.4 X 10 ⁻³	3.50 X 10 ⁴

i. Determine the general rate law for the reaction above.

ii. If the concentration of the **OCI**⁻ is tripled, how will the initial rate change?

iii. If the concentration of the **OCI**⁻ is tripled, how will the reaction time change?

_	In each of the following pairs of			1 -116
,	IN ARCH OF THA FOLLOWING HRIPS OF	reaction choose the one	that will ha ciawar	HISTITY VALUE CHAICA
۷.	III Cacii di tiic idildwille balla di	reaction, choose the one	z tilat will be slower.	Justila Aggi Ciloicc.

- i. (a) The burning of a strip of magnesium, $Mg_{(s)}$, in air.
 - (b) The burning of finely powdered magnesium, Mg(s), in air.
- ii. (a) The oxidation of hydrogen peroxide, H_2O_2 , in air.
 - (b) The oxidation of hydrogen peroxide, H₂O₂, in air with catalyst.
- iii. (a) The reaction of 5.0 g of powdered zinc metal, $Zn_{(s)}$, with 1.0 M $HCl_{(aq)}$ at 50.0°C.
 - (b) The reaction of 5.0 g of powdered zinc metal, Zn(s), with 1.0 M HCl(aq) at 20.0°C.
- iv. (a) The reaction of hydrogen gas, $H_{2(g)}$, with the oxygen in the air, $O_{2(g)}$, to produce water vapour, $H_2O_{(g)}$.
 - (b) The reaction of hydrogen gas, $H_{2(g)}$, with pure oxygen, $O_{2(g)}$, to produce water vapour, $H_2O_{(g)}$.
- v. (a) $Pb^{2+}_{(aq)} + 2 I_{(aq)}^{-} \rightarrow PbI_{2(s)}$ (b) $C_{11}H_{22}O_{11(s)} + 11 O_{2(g)} \rightarrow 11 CO_{2(g)} + 11 H_2O_{(g)}$

i	
ii.	
-	
iii.	·
-	
iv.	
-	

3. Draw two ways you can alter a Maxwell Boltzmann graph to INCREASE the reaction rate and explain your reasoning for your modifications.

4. When a candle $(C_{20}H_{42})$ burns, the following reaction occurs:

$$C_{20}H_{42\,(s)}$$
 + 61 $O_{2\,(g)}$ \rightarrow 40 $CO_{2\,(g)}$ + 42 $H_2O_{(g)}$ + heat

If the rate of production of $CO_{2(g)}$ is 0.98 g/min, what mass of $C_{20}H_{42(s)}$ is consumed in 30.0 seconds?

Answer: 7.86 x 10e-2 g C20H42

5. Consider the following reaction:

2 Al
$$_{(s)}$$
 + 3 CuCl_{2 (aq)} \rightarrow 2 AlCl_{3 (aq)} + 3 Cu $_{(s)}$

If the rate of consumption of Al is 0.46 g/min, how many minutes will it take to produce 0.89 g of Cu?

Answer: 0.548 minutes

- 6. When magnesium is reacted with dilute hydrochloric acid (HCl), a reaction occurs in which hydrogen gas and magnesium chloride is formed.
 - a) Write a balanced formula equation for this reaction.

- b) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the *rate of consumption of HCl* in moles/s.
 - 1.0 x 10e-8 mol HCl / sec
- c) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the rate of production of H_2 in g/s. $5.0 \times 10e-9$ mold H_2 / sec
- d) If the rate of consumption of magnesium is 5.0×10^{-9} mol/s, find the mass of Mg consumed in 5.0 minutes.

7) The mass of a burning candle is monitored to determine the rate of combustion of paraffin. An accepted reaction for the combustion of paraffin is:

$$2 C_{28}H_{58 (s)} + 85 O_{2 (g)} \rightarrow 56 CO_{2 (g)} + 58 H_2O_{(g)}$$

The following data is observed:

Time (min)	Mass of Candle (g)
0.0	25.6
6.0	25.1
12.0	24.5
18.0	23.9
24.0	23.4
30.0	22.8

- a) Calculate the average rate of consumption of paraffin in g/min for the time interval 12.0 to 24.0 minutes.
 1.42 x 10e-1 g wax / min
- b) Calculate the rate of CO_2 production in mol/min for the time interval 12.0 to 24.0 minutes. 0.010 mol CO_2 / min